True Proportions

Working with proportions is no different than working with fractions. Except in a proportion, there are 2 fractions present, and they are equivalent to one another. Here is the general form of a proportion:

$$\frac{A}{B} = \frac{C}{D}$$

Proportions are helpful because they can be cross-multiplied:

$$A \times D = B \times C$$

You can find the missing term in a proportion by cross-multiplying and solving for the missing number.

Examples

 $\frac{1}{2} = \frac{6}{12}$ 1 x 12 = 6 x 2 12 = 12

Both sides of the proportion are equivalent.

$$\frac{1}{5} = \frac{10}{50}$$

 $1 \ge 50 = 5 \ge 10$

50 = 50

Both sides of the proportion are equivalent.

Sample Problems

1.
$$\frac{2}{3} = \frac{C}{6}$$

2.
$$\frac{A}{5} = \frac{6}{10}$$

3.
$$\frac{2}{6} = \frac{8}{D}$$

Solutions

1. C = 4 2 x 6 = 3 x C 12 = 3 x C C = $\frac{12}{3}$ C = 4 2. A = 3 A x 10 = 5 x 6 A x 10 = 30

$A = \frac{30}{10}$
A = 3
3. D = 24
2 x D = 6 x 8
2 x D = 48
$D = \frac{48}{2}$