True Proportions

Working with proportions is no different than working with fractions. Except in a proportion, there are 2 fractions present, and they are equivalent to one another. Here is the general form of a proportion:

$$
\frac{\mathrm{A}}{\mathrm{~B}}=\frac{\mathrm{C}}{\mathrm{D}}
$$

Proportions are helpful because they can be cross-multiplied:

$$
\mathrm{A} \times \mathrm{D}=\mathrm{B} \times \mathrm{C}
$$

You can find the missing term in a proportion by cross-multiplying and solving for the missing number.

Examples

$\frac{1}{2}=\frac{6}{12}$
$1 \times 12=6 \times 2$
$12=12$
Both sides of the proportion are equivalent.
$\frac{1}{5}=\frac{10}{50}$
$1 \times 50=5 \times 10$
$50=50$
Both sides of the proportion are equivalent.
Sample Problems

1. $\frac{2}{3}=\frac{C}{6}$
2. $\frac{\mathrm{A}}{5}=\frac{6}{10}$
3. $\frac{2}{6}=\frac{8}{D}$

Solutions

1. $C=4$
$2 \times 6=3 \times C$
$12=3 \mathrm{xC}$
$C=\frac{12}{3}$
$C=4$
2. $A=3$
$A \times 10=5 \times 6$
$A \times 10=30$

$$
\begin{aligned}
& A=\frac{30}{10} \\
& A=3 \\
& \text { 3. } D=24 \\
& 2 \times D=6 \times 8 \\
& 2 \times D=48 \\
& D=\frac{48}{2}
\end{aligned}
$$

